Hooks
Hooks are a composable extensibility mechanism for extending agent functionality by subscribing to events throughout the agent lifecycle. The hook system enables both built-in components and user code to react to or modify agent behavior through strongly-typed event callbacks.
Overview
Section titled “Overview”The hooks system is a composable, type-safe system that supports multiple subscribers per event type.
A Hook Event is a specific event in the lifecycle that callbacks can be associated with. A Hook Callback is a callback function that is invoked when the hook event is emitted.
Hooks enable use cases such as:
- Monitoring agent execution and tool usage
- Modifying tool execution behavior
- Adding validation and error handling
- Monitoring multi-agent execution flow and node transitions
- Debugging complex orchestration patterns
- Implementing custom logging and metrics collection
Basic Usage
Section titled “Basic Usage”Hook callbacks are registered against specific event types and receive strongly-typed event objects when those events occur during agent execution. Each event carries relevant data for that stage of the agent lifecycle - for example, BeforeInvocationEvent includes agent and request details, while BeforeToolCallEvent provides tool information and parameters.
Registering Individual Hook Callbacks
Section titled “Registering Individual Hook Callbacks”You can register callbacks for specific events using agent.hooks after the fact:
agent = Agent()
# Register individual callbacksdef my_callback(event: BeforeInvocationEvent) -> None: print("Custom callback triggered")
agent.hooks.add_callback(BeforeInvocationEvent, my_callback)const agent = new Agent()
// Register individual callbackconst myCallback = (event: BeforeInvocationEvent) => { console.log('Custom callback triggered')}
agent.hooks.addCallback(BeforeInvocationEvent, myCallback)For multi-agent orchestrators, you can register callbacks for orchestration events:
# Create your orchestrator (Graph or Swarm)orchestrator = Graph(...)
# Register individual callbacksdef my_callback(event: BeforeNodeCallEvent) -> None: print(f"Custom callback triggered")
orchestrator.hooks.add_callback(BeforeNodeCallEvent, my_callback)// This feature is not yet available in TypeScript SDKCreating a Hook Provider
Section titled “Creating a Hook Provider”The HookProvider protocol allows a single object to register callbacks for multiple events. This pattern works for both single-agent and multi-agent orchestrators:
class LoggingHook(HookProvider): def register_hooks(self, registry: HookRegistry) -> None: registry.add_callback(BeforeInvocationEvent, self.log_start) registry.add_callback(AfterInvocationEvent, self.log_end)
def log_start(self, event: BeforeInvocationEvent) -> None: print(f"Request started for agent: {event.agent.name}")
def log_end(self, event: AfterInvocationEvent) -> None: print(f"Request completed for agent: {event.agent.name}")
# Passed in via the hooks parameteragent = Agent(hooks=[LoggingHook()])
# Or added after the factagent.hooks.add_hook(LoggingHook())class LoggingHook implements HookProvider { registerCallbacks(registry: HookRegistry): void { registry.addCallback(BeforeInvocationEvent, (ev) => this.logStart(ev)) registry.addCallback(AfterInvocationEvent, (ev) => this.logEnd(ev)) }
private logStart(event: BeforeInvocationEvent): void { console.log('Request started') }
private logEnd(event: AfterInvocationEvent): void { console.log('Request completed') }}
// Passed in via the hooks parameterconst agent = new Agent({ hooks: [new LoggingHook()] })
// Or added after the factagent.hooks.addHook(new LoggingHook())Hook Event Lifecycle
Section titled “Hook Event Lifecycle”Single-Agent Lifecycle
Section titled “Single-Agent Lifecycle”The following diagram shows when hook events are emitted during a typical agent invocation where tools are invoked:
flowchart LR subgraph Start["Request Start Events"] direction TB BeforeInvocationEvent["BeforeInvocationEvent"] StartMessage["MessageAddedEvent"] BeforeInvocationEvent --> StartMessage end subgraph Model["Model Events"] direction TB AfterModelCallEvent["AfterModelCallEvent"] BeforeModelCallEvent["BeforeModelCallEvent"] ModelMessage["MessageAddedEvent"] BeforeModelCallEvent --> AfterModelCallEvent AfterModelCallEvent --> ModelMessage end subgraph Tool["Tool Events"] direction TB AfterToolCallEvent["AfterToolCallEvent"] BeforeToolCallEvent["BeforeToolCallEvent"] ToolMessage["MessageAddedEvent"] BeforeToolCallEvent --> AfterToolCallEvent AfterToolCallEvent --> ToolMessage end subgraph End["Request End Events"] direction TB AfterInvocationEvent["AfterInvocationEvent"] endStart --> ModelModel <--> ToolTool --> EndMulti-Agent Lifecycle
Section titled “Multi-Agent Lifecycle”The following diagram shows when multi-agent hook events are emitted during orchestrator execution:
flowchart LRsubgraph Init["Initialization"] direction TB MultiAgentInitializedEvent["MultiAgentInitializedEvent"]endsubgraph Invocation["Invocation Lifecycle"] direction TB BeforeMultiAgentInvocationEvent["BeforeMultiAgentInvocationEvent"] AfterMultiAgentInvocationEvent["AfterMultiAgentInvocationEvent"] BeforeMultiAgentInvocationEvent --> NodeExecution NodeExecution --> AfterMultiAgentInvocationEventendsubgraph NodeExecution["Node Execution (Repeated)"] direction TB BeforeNodeCallEvent["BeforeNodeCallEvent"] AfterNodeCallEvent["AfterNodeCallEvent"] BeforeNodeCallEvent --> AfterNodeCallEventendInit --> InvocationAvailable Events
Section titled “Available Events”The hooks system provides events for different stages of execution. Events marked (Python only) are specific to multi-agent orchestrators and are not available in TypeScript.
| Event | Description |
|---|---|
AgentInitializedEvent | Triggered when an agent has been constructed and finished initialization at the end of the agent constructor. |
BeforeInvocationEvent | Triggered at the beginning of a new agent invocation request |
AfterInvocationEvent | Triggered at the end of an agent request, regardless of success or failure. Uses reverse callback ordering |
MessageAddedEvent | Triggered when a message is added to the agent’s conversation history |
BeforeModelCallEvent | Triggered before the model is invoked for inference |
AfterModelCallEvent | Triggered after model invocation completes. Uses reverse callback ordering |
BeforeToolCallEvent | Triggered before a tool is invoked. |
AfterToolCallEvent | Triggered after tool invocation completes. Uses reverse callback ordering |
BeforeToolsEvent (TypeScript only) | Triggered before tools are executed in a batch. |
AfterToolsEvent (TypeScript only) | Triggered after tools are executed in a batch. Uses reverse callback ordering |
MultiAgentInitializedEvent (Python only) | Triggered when multi-agent orchestrator is initialized |
BeforeMultiAgentInvocationEvent (Python only) | Triggered before orchestrator execution starts |
AfterMultiAgentInvocationEvent (Python only) | Triggered after orchestrator execution completes. Uses reverse callback ordering |
BeforeNodeCallEvent (Python only) | Triggered before individual node execution starts |
AfterNodeCallEvent (Python only) | Triggered after individual node execution completes. Uses reverse callback ordering |
Hook Behaviors
Section titled “Hook Behaviors”Event Properties
Section titled “Event Properties”Most event properties are read-only to prevent unintended modifications. However, certain properties can be modified to influence agent behavior:
-
retry- Request a retry of the model invocation. See Model Call Retry.
-
cancel_tool- Cancel tool execution with a message. See Limit Tool Counts.selected_tool- Replace the tool to be executed. See Tool Interception.tool_use- Modify tool parameters before execution. See Fixed Tool Arguments.
-
result- Modify the tool result. See Result Modification.
AfterModelCallEventretryModelCall- Request a retry of the model invocation (typically after reducing context size).
Callback Ordering
Section titled “Callback Ordering”Some events come in pairs, such as Before/After events. The After event callbacks are always called in reverse order from the Before event callbacks to ensure proper cleanup semantics.
Advanced Usage
Section titled “Advanced Usage”Accessing Invocation State in Hooks
Section titled “Accessing Invocation State in Hooks”Invocation state provides configuration and context data passed through the agent or orchestrator invocation. This is particularly useful for:
- Custom Objects: Access database client objects, connection pools, or other Python objects
- Request Context: Access session IDs, user information, settings, or request-specific data
- Multi-Agent Shared State: In multi-agent patterns, access state shared across all agents - see Shared State Across Multi-Agent Patterns
- Custom Parameters: Pass any additional data that hooks might need
from strands.hooks import BeforeToolCallEventimport logging
def log_with_context(event: BeforeToolCallEvent) -> None: """Log tool invocations with context from invocation state.""" # Access invocation state from the event user_id = event.invocation_state.get("user_id", "unknown") session_id = event.invocation_state.get("session_id")
# Access non-JSON serializable objects like database connections db_connection = event.invocation_state.get("database_connection") logger_instance = event.invocation_state.get("custom_logger")
# Use custom logger if provided, otherwise use default logger = logger_instance if logger_instance else logging.getLogger(__name__)
logger.info( f"User {user_id} in session {session_id} " f"invoking tool: {event.tool_use['name']} " f"with DB connection: {db_connection is not None}" )
# Register the hookagent = Agent(tools=[my_tool])agent.hooks.add_callback(BeforeToolCallEvent, log_with_context)
# Execute with context including non-serializable objectsimport sqlite3custom_logger = logging.getLogger("custom")db_conn = sqlite3.connect(":memory:")
result = agent( "Process the data", user_id="user123", session_id="sess456", database_connection=db_conn, # Non-JSON serializable object custom_logger=custom_logger # Non-JSON serializable object)// This feature is not yet available in TypeScript SDKMulti-agent hook events provide access to:
- source: The multi-agent orchestrator instance (for example: Graph/Swarm)
- node_id: Identifier of the node being executed (for node-level events)
- invocation_state: Configuration and context data passed through the orchestrator invocation
Multi-agent hooks provide configuration and context data passed through the orchestrator’s lifecycle.
Tool Interception
Section titled “Tool Interception”Modify or replace tools before execution:
class ToolInterceptor(HookProvider): def register_hooks(self, registry: HookRegistry) -> None: registry.add_callback(BeforeToolCallEvent, self.intercept_tool)
def intercept_tool(self, event: BeforeToolCallEvent) -> None: if event.tool_use.name == "sensitive_tool": # Replace with a safer alternative event.selected_tool = self.safe_alternative_tool event.tool_use["name"] = "safe_tool"// Changing of tools is not yet available in TypeScript SDKResult Modification
Section titled “Result Modification”Modify tool results after execution:
class ResultProcessor(HookProvider): def register_hooks(self, registry: HookRegistry) -> None: registry.add_callback(AfterToolCallEvent, self.process_result)
def process_result(self, event: AfterToolCallEvent) -> None: if event.tool_use.name == "calculator": # Add formatting to calculator results original_content = event.result["content"][0]["text"] event.result["content"][0]["text"] = f"Result: {original_content}"// Changing of tool results is not yet available in TypeScript SDKConditional Node Execution
Section titled “Conditional Node Execution”Implement custom logic to modify orchestration behavior in multi-agent systems:
class ConditionalExecutionHook(HookProvider): def __init__(self, skip_conditions: dict[str, callable]): self.skip_conditions = skip_conditions
def register_hooks(self, registry: HookRegistry) -> None: registry.add_callback(BeforeNodeCallEvent, self.check_execution_conditions)
def check_execution_conditions(self, event: BeforeNodeCallEvent) -> None: node_id = event.node_id if node_id in self.skip_conditions: condition_func = self.skip_conditions[node_id] if condition_func(event.invocation_state): print(f"Skipping node {node_id} due to condition") # Note: Actual node skipping would require orchestrator-specific implementation// This feature is not yet available in TypeScript SDKBest Practices
Section titled “Best Practices”Composability
Section titled “Composability”Design hooks to be composable and reusable:
class RequestLoggingHook(HookProvider): def register_hooks(self, registry: HookRegistry) -> None: registry.add_callback(BeforeInvocationEvent, self.log_request) registry.add_callback(AfterInvocationEvent, self.log_response) registry.add_callback(BeforeToolCallEvent, self.log_tool_use)
...// Changing of tools is not yet available in TypeScript SDKEvent Property Modifications
Section titled “Event Property Modifications”When modifying event properties, log the changes for debugging and audit purposes:
class ResultProcessor(HookProvider): def register_hooks(self, registry: HookRegistry) -> None: registry.add_callback(AfterToolCallEvent, self.process_result)
def process_result(self, event: AfterToolCallEvent) -> None: if event.tool_use.name == "calculator": original_content = event.result["content"][0]["text"] logger.info(f"Modifying calculator result: {original_content}") event.result["content"][0]["text"] = f"Result: {original_content}"// Changing of tools is not yet available in TypeScript SDKOrchestrator-Agnostic Design
Section titled “Orchestrator-Agnostic Design”Design multi-agent hooks to work with different orchestrator types:
class UniversalMultiAgentHook(HookProvider): def register_hooks(self, registry: HookRegistry) -> None: registry.add_callback(BeforeNodeCallEvent, self.handle_node_execution)
def handle_node_execution(self, event: BeforeNodeCallEvent) -> None: orchestrator_type = type(event.source).__name__ print(f"Executing node {event.node_id} in {orchestrator_type} orchestrator")
# Handle orchestrator-specific logic if needed if orchestrator_type == "Graph": self.handle_graph_node(event) elif orchestrator_type == "Swarm": self.handle_swarm_node(event)
def handle_graph_node(self, event: BeforeNodeCallEvent) -> None: # Graph-specific handling pass
def handle_swarm_node(self, event: BeforeNodeCallEvent) -> None: # Swarm-specific handling pass// This feature is not yet available in TypeScript SDKIntegration with Multi-Agent Systems
Section titled “Integration with Multi-Agent Systems”Multi-agent hooks complement single-agent hooks. Individual agents within the orchestrator can still have their own hooks, creating a layered monitoring and customization system:
# Single-agent hook for individual agentsclass AgentLevelHook(HookProvider): def register_hooks(self, registry: HookRegistry) -> None: registry.add_callback(BeforeToolCallEvent, self.log_tool_use)
def log_tool_use(self, event: BeforeToolCallEvent) -> None: print(f"Agent tool call: {event.tool_use['name']}")
# Multi-agent hook for orchestratorclass OrchestratorLevelHook(HookProvider): def register_hooks(self, registry: HookRegistry) -> None: registry.add_callback(BeforeNodeCallEvent, self.log_node_execution)
def log_node_execution(self, event: BeforeNodeCallEvent) -> None: print(f"Orchestrator node execution: {event.node_id}")
# Create agents with individual hooksagent1 = Agent(tools=[tool1], hooks=[AgentLevelHook()])agent2 = Agent(tools=[tool2], hooks=[AgentLevelHook()])
# Create orchestrator with multi-agent hooksorchestrator = Graph( agents={"agent1": agent1, "agent2": agent2}, hooks=[OrchestratorLevelHook()])// This feature is not yet available in TypeScript SDKThis layered approach provides comprehensive observability and control across both individual agent execution and orchestrator-level coordination.
Cookbook
Section titled “Cookbook”This section contains practical hook implementations for common use cases.
Fixed Tool Arguments
Section titled “Fixed Tool Arguments”Useful for enforcing security policies, maintaining consistency, or overriding agent decisions with system-level requirements. This hook ensures specific tools always use predetermined parameter values regardless of what the agent specifies.
from typing import Anyfrom strands.hooks import HookProvider, HookRegistry, BeforeToolCallEvent
class ConstantToolArguments(HookProvider): """Use constant argument values for specific parameters of a tool."""
def __init__(self, fixed_tool_arguments: dict[str, dict[str, Any]]): """ Initialize fixed parameter values for tools.
Args: fixed_tool_arguments: A dictionary mapping tool names to dictionaries of parameter names and their fixed values. These values will override any values provided by the agent when the tool is invoked. """ self._tools_to_fix = fixed_tool_arguments
def register_hooks(self, registry: HookRegistry, **kwargs: Any) -> None: registry.add_callback(BeforeToolCallEvent, self._fix_tool_arguments)
def _fix_tool_arguments(self, event: BeforeToolCallEvent): # If the tool is in our list of parameters, then use those parameters if parameters_to_fix := self._tools_to_fix.get(event.tool_use["name"]): tool_input: dict[str, Any] = event.tool_use["input"] tool_input.update(parameters_to_fix)// Changing of tools is not yet available in TypeScript SDKFor example, to always force the calculator tool to use precision of 1 digit:
fix_parameters = ConstantToolArguments({ "calculator": { "precision": 1, }})
agent = Agent(tools=[calculator], hooks=[fix_parameters])result = agent("What is 2 / 3?")// Changing of tools is not yet available in TypeScript SDKLimit Tool Counts
Section titled “Limit Tool Counts”Useful for preventing runaway tool usage, implementing rate limiting, or enforcing usage quotas. This hook tracks tool invocations per request and replaces tools with error messages when limits are exceeded.
from strands import toolfrom strands.hooks import HookRegistry, HookProvider, BeforeToolCallEvent, BeforeInvocationEventfrom threading import Lock
class LimitToolCounts(HookProvider): """Limits the number of times tools can be called per agent invocation"""
def __init__(self, max_tool_counts: dict[str, int]): """ Initializer.
Args: max_tool_counts: A dictionary mapping tool names to max call counts for tools. If a tool is not specified in it, the tool can be called as many times as desired """ self.max_tool_counts = max_tool_counts self.tool_counts = {} self._lock = Lock()
def register_hooks(self, registry: HookRegistry) -> None: registry.add_callback(BeforeInvocationEvent, self.reset_counts) registry.add_callback(BeforeToolCallEvent, self.intercept_tool)
def reset_counts(self, event: BeforeInvocationEvent) -> None: with self._lock: self.tool_counts = {}
def intercept_tool(self, event: BeforeToolCallEvent) -> None: tool_name = event.tool_use["name"] with self._lock: max_tool_count = self.max_tool_counts.get(tool_name) tool_count = self.tool_counts.get(tool_name, 0) + 1 self.tool_counts[tool_name] = tool_count
if max_tool_count and tool_count > max_tool_count: event.cancel_tool = ( f"Tool '{tool_name}' has been invoked too many and is now being throttled. " f"DO NOT CALL THIS TOOL ANYMORE " )// This feature is not yet available in TypeScript SDKFor example, to limit the sleep tool to 3 invocations per invocation:
limit_hook = LimitToolCounts(max_tool_counts={"sleep": 3})
agent = Agent(tools=[sleep], hooks=[limit_hook])
# This call will only have 3 successful sleepsagent("Sleep 5 times for 10ms each or until you can't anymore")# This will sleep successfully again because the count resets every invocationagent("Sleep once")// This feature is not yet available in TypeScript SDKModel Call Retry
Section titled “Model Call Retry”Useful for implementing custom retry logic for model invocations. The AfterModelCallEvent.retry field allows hooks to request retries based on any criteria—exceptions, response validation, content quality checks, or any custom logic. This example demonstrates retrying on exceptions with exponential backoff:
import asyncioimport loggingfrom strands.hooks import HookProvider, HookRegistry, BeforeInvocationEvent, AfterModelCallEvent
logger = logging.getLogger(__name__)
class RetryOnServiceUnavailable(HookProvider): """Retry model calls when ServiceUnavailable errors occur."""
def __init__(self, max_retries: int = 3): self.max_retries = max_retries self.retry_count = 0
def register_hooks(self, registry: HookRegistry) -> None: registry.add_callback(BeforeInvocationEvent, self.reset_counts) registry.add_callback(AfterModelCallEvent, self.handle_retry)
def reset_counts(self, event: BeforeInvocationEvent = None) -> None: self.retry_count = 0
async def handle_retry(self, event: AfterModelCallEvent) -> None: if event.exception: if "ServiceUnavailable" in str(event.exception): logger.info("ServiceUnavailable encountered") if self.retry_count < self.max_retries: logger.info("Retrying model call") self.retry_count += 1 event.retry = True await asyncio.sleep(2 ** self.retry_count) # Exponential backoff else: # Reset counts on successful call self.reset_counts()// This feature is not yet available in TypeScript SDKFor example, to retry up to 3 times on service unavailable errors:
from strands import Agent
retry_hook = RetryOnServiceUnavailable(max_retries=3)agent = Agent(hooks=[retry_hook])
result = agent("What is the capital of France?")// This feature is not yet available in TypeScript SDK